PREDICTIVE “BIG DATA” ANALYTICS IN THE PROCESS OF GRAIN FIELD MONITORING

Main Article Content

Игорь Владимирович Ариничев

Abstract

The article examines the role of predictive “Big Data” analytics in the field of monitoring grain production, which is of strategic importance for ensuring food security and sustainable development of agriculture. The work emphasizes that predictive analytics, based on the analysis of large volumes of data, provides a powerful tool for accurate and prompt monitoring of processes associated with grain production, allowing real-time diagnosis of plant condition, monitoring grain quality and predicting phytosanitary conditions, which gives farmers have the opportunity to quickly respond to any changes and problems that arise in the production cycle. The article also identifies a number of serious obstacles preventing the successful intellectualization of monitoring processes. These include limited access to high-speed Internet in rural areas, a shortage of specialists with the necessary digital skills, and a lack of clear methodology for working with data. Overcoming these barriers requires a comprehensive approach, including investments in infrastructure development, education and training of specialists, as well as the creation of systematic methodologies for working effectively with data. Overall, the work allows us to better understand the importance of predictive Big Data analytics in agriculture and focuses on the challenges and opportunities faced by grain producers in the process of digital transformation.

Article Details

Section
Agro-industry

References

1. Sustainable Development Goals // Rezhim dostupa: https://www.un.org/sustainabledevelopment/
2. Postanovlenie Pravitel'stva Rossiiskoi Federatsii ot 13.05.2022 g. № 872 «O vnesenii izmenenii v postanovlenie Pravitel'stva Rossiiskoi Federatsii ot 25 avgusta 2017 g. № 996 // Rezhim dostupa: http://government.ru/docs/all/141182/
3. Alekhin V.T., Mikhina N.G., Mikhailikova V.V. Nuzhny li EHPV segodnya? // FGBU Rossel'khoznadzor 28.10.2016. Rezhim dostupa: https://rosselhoscenter.ru/
4. Ehffektivnye otechestvennye praktiki na baze tekhnologii iskusstvennogo intellekta v sel'skom khozyaistve (2023). Analiticheskii otchet. ‒ ANO «Tsifrovaya ehkonomikA». Rezhim dostupa: https://d-economy.ru/research/ (data obrashcheniya: 22.09.2023).
5. Natsional'naya programma «Tsifrovaya ehkonomika Rossiiskoi FederatsiI», utverzhdennaya protokolom zasedaniya prezidiuma Soveta pri Prezidente Rossiiskoi Federatsii po strategicheskomu razvitiyu i natsional'nym proektam ot 4 iyunya 2019 g. № 7. // Rezhim dostupa: https://www.consultant.ru/document/cons_doc_LAW_328854/
6. Vedomstvennyi proekt «Tsifrovoe sel'skoe khozyaistvO»: ofitsial'noe izdanie. – M.: FGBNU «RosinformagroteKH», 2019. – 48 s.
7. Rasporyazhenie Pravitel'stva Rossiiskoi Federatsii ot 10.08.2019 № 1796 – r «Ob utverzhdenii Dolgosrochnoi strategii razvitiya zernovogo kompleksa Rossiiskoi Federatsii do 2035 godA» // Rezhim dostupa: http://government.ru/docs/37668/
8. Hadi H. J., Shnain A. H., Hadishaheed S., Ahmad A. H. Big Data and Five V’S Characteristics,” International Journal of Advannces in Electronics and Computer Science, no. 2, pp. 2393–2835, 2015.
9. Lynch C. How do your data grow? Nature 455, 28–29 (2008). https://doi.org/10.1038/455028a